Hydrogen Bonds Quotes in The Double Helix
I realized that the phosphate groups in Linus’ model were not ionized, but that each group contained a bound hydrogen atom and so had no net charge. Pauling’s nucleic acid in a sense was not an acid at all. Moreover, the uncharged phosphate groups were not incidental features. The hydrogens were part of the hydrogen bonds that held together the three intertwined chains.
Without the hydrogen atoms, the chains would immediately fly apart and the structure vanish.
Everything I knew about nucleic-acid chemistry indicated that phosphate groups never contained bound hydrogen atoms. No one had ever questioned that DNA was a moderately strong acid. Thus, under physiological conditions, there would always be positively charged ions like sodium or magnesium lying nearby to neutralize the negatively charged phosphate groups. All our speculations about whether divalent ions held the chains together would have made no sense if there were hydrogen atoms firmly bound to the phosphates. Yet somehow Linus, unquestionably the world’s most astute chemist, had come to the opposite conclusion.
Despite the messy backbone, my pulse began to race. If this was DNA, I should create a bombshell by announcing its discovery. The existence of two intertwined chains with identical base sequences could not be a chance matter. Instead it would strongly suggest that one chain in each molecule had at some earlier stage served as the template for the synthesis of the other chain. Under this scheme, gene replication starts with the separation of its two identical chains.
Suddenly I became aware that an adenine-thymine pair held together by two hydrogen bonds was identical in shape to a guanine-cytosine pair held together by at least two hydrogen bonds. All the hydrogen bonds seemed to form naturally; no fudging was required to make the two types of base pairs identical in shape.
[…]
The hydrogen-bonding requirement meant that adenine would always pair with thymine, while guanine could pair only with cytosine. Chargaff’s rules then suddenly stood out as a consequence of a double-helical structure for DNA. Even more exciting, this type of double helix suggested a replication scheme much more satisfactory than my briefly considered like-with-like pairing.
Rosy’s instant acceptance of our model at first amazed me. I had feared that her sharp, stubborn mind, caught in her self-made antihelical trap, might dig up irrelevant results that would foster uncertainty about the correctness of the double helix. Nonetheless, like almost everyone else, she saw the appeal of the base pairs and accepted the fact that the structure was too pretty not to be true. Moreover, even before she learned of our proposal, the X-ray evidence had been forcing her more than she cared to admit toward a helical structure. The positioning of the backbone on the outside of the molecule was demanded by her evidence and, given the necessity to hydrogen-bond the bases together, the uniqueness of the A-T and G-C pairs was a fact she saw no reason to argue about.
Fortunately, by the time my letter reached Cal Tech the base pairs had fallen out. If they had not, I would have been in the dreadful position of having to inform Delbrück and Pauling that I had impetuously written of an idea which was only twelve hours old and lived only twenty-four before it was dead.