X-ray Diffraction Quotes in The Double Helix
I proceeded to forget Maurice, but not his DNA photograph. A potential key to the secret of life was impossible to push out of my mind. The fact that I was unable to interpret it did not bother me. It was certainly better to imagine myself becoming famous than maturing into a stifled academic who had never risked a thought.
Max Perutz was in his office when I showed up just after lunch. […] I explained that I was ignorant of how X-rays diffract, but Max immediately put me at ease. I was assured that no high-powered mathematics would be required: both he and John had studied chemistry as undergraduates. All I need do was read a crystallographic text; this would enable me to understand enough theory to begin to take X-ray photographs.
[…]
When Max realized that I had come directly to the lab from the station and had not yet seen any of the colleges, he altered our course to take me through King’s, along the backs, and through to the Great Court of Trinity. I had never seen such beautiful buildings in all my life, and any hesitation I might have had about leaving my safe life as a biologist vanished.
From my first day in the lab I knew I would not leave Cambridge for a long time. Departing would be idiocy, for I had immediately discovered the fun of talking to Francis Crick. Finding someone in Max’s lab who knew that DNA was more important than proteins was real luck. Moreover, it was a great relief for me not to spend full time learning X-ray analysis of proteins. Our lunch conversations quickly centered on how genes were put together. Within a few days after my arrival, we knew what to do: imitate Linus Pauling and beat him at his own game.
In place of pencil and paper, the main working tools were a set of molecular models superficially resembling the toys of preschool children.
We could thus see no reason why we should not solve DNA in the same way. All we had to do was to construct a set of molecular models and begin to play—with luck, the structure would be a helix.
The wrong person had been sent to hear Rosy. If Francis had gone along, no such ambiguity would have existed. It was the penalty for being oversensitive to the situation. For, admittedly, the sight of Francis mulling over the consequences of Rosy’s information when it was hardly out of her mouth would have upset Maurice. In one sense it would be grossly unfair for them to learn the facts at the same time. Certainly Maurice should have the first chance to come to grips with the problem. On the other hand, there seemed no indication that he thought the answer would come from playing with molecular models. Our conversation on the previous night had hardly alluded to that approach. Of course, the possibility existed that he was keeping something back. But that was very unlikely—Maurice just wasn’t that type.
My first X-ray pictures revealed, not unexpectedly, much less detail than was found in the published pictures. Over a month was required before I could get even halfway presentable pictures. They were still a long way, though, from being good enough to spot a helix.
Interrupting her harangue, I asserted that the simplest form for any regular polymeric molecule was a helix. Knowing that she might counter with the fact that the sequence of bases was unlikely to be regular, I went on with the argument that, since DNA molecules form crystals, the nucleotide order must not affect the general structure. Rosy by then was hardly able to control her temper, and her voice rose as she told me that the stupidity of my remarks would be obvious if I would stop blubbering and look at her X-ray evidence.
[…]
Without further hesitation I implied that she was incompetent in interpreting X-ray pictures. If only she would learn some theory, she would understand how her supposed antihelical features arose from the minor distortions needed to pack regular helices into a crystalline lattice.
The instant I saw the picture my mouth fell open and my pulse began to race. The pattern was unbelievably simpler than those obtained previously (“A” form). Moreover, the black cross of reflections which dominated the picture could arise only from a helical structure. […] The real problem was the absence of any structural hypothesis which would allow them to pack the bases regularly in the inside of the helix. Of course this presumed that Rosy had hit it right in wanting the bases in the center and the backbone outside. Though Maurice told me he was now quite convinced she was correct, I remained skeptical, for her evidence was still out of the reach of Francis and me.
Rosy’s instant acceptance of our model at first amazed me. I had feared that her sharp, stubborn mind, caught in her self-made antihelical trap, might dig up irrelevant results that would foster uncertainty about the correctness of the double helix. Nonetheless, like almost everyone else, she saw the appeal of the base pairs and accepted the fact that the structure was too pretty not to be true. Moreover, even before she learned of our proposal, the X-ray evidence had been forcing her more than she cared to admit toward a helical structure. The positioning of the backbone on the outside of the molecule was demanded by her evidence and, given the necessity to hydrogen-bond the bases together, the uniqueness of the A-T and G-C pairs was a fact she saw no reason to argue about.